FUGITIVE DUST TRIGGER ACTION AND RESPONSE PLAN
<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Document type</th>
<th>Description</th>
<th>Origin</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8 December 2016</td>
<td>Ash Dam Fugitive Dust Trigger Action Response Plan</td>
<td>Issued for Internal Review</td>
<td>RF</td>
<td>BD</td>
</tr>
<tr>
<td>0</td>
<td>9 December 2016</td>
<td>Dust Trigger Action Response Plan</td>
<td>Issued for Review</td>
<td>RF/BD</td>
<td>EPA</td>
</tr>
<tr>
<td>1</td>
<td>5 January 2017</td>
<td></td>
<td>Finalised</td>
<td>RF/BD</td>
<td>BD</td>
</tr>
<tr>
<td>2</td>
<td>3 March 2017</td>
<td>Revised following EPA feedback</td>
<td>Revision</td>
<td>BW</td>
<td>BD</td>
</tr>
<tr>
<td>3</td>
<td>22 March 2017</td>
<td>Update triggers</td>
<td>Revision</td>
<td>KS</td>
<td>BW</td>
</tr>
<tr>
<td>4</td>
<td>29 May 2017</td>
<td>Response to EPA feedback of 17 May 2017</td>
<td>Revision</td>
<td>BW</td>
<td>BD</td>
</tr>
<tr>
<td>5</td>
<td>8 December 2017</td>
<td>Updated following EPA letter of 6 December 2017</td>
<td>Revision</td>
<td>BW</td>
<td>BD</td>
</tr>
<tr>
<td>6</td>
<td>3 January 2018</td>
<td>Updated following EPA feedback 3rd January 2018</td>
<td>Revision</td>
<td>KM</td>
<td>PG/BD</td>
</tr>
</tbody>
</table>

Disclaimer Statement

All contents of this document are commercial in confidence. No portion of this document is to be used for any purposes other than evaluation for the specified client including copying, editing and distribution, without the specific written consent of McMahon Services Australia.

© McMahon Services Australia Pty Ltd, 2017
Contents

Glossary..4
Roles and Responsibilities..4

1. Introduction ..6
 1.1 Guiding Principles ..6
 1.2 Purpose ..7

2. Objective ..8

3. Scope ...8
 3.1 Potential Dust-Generating Activities and Conditions ..8
 3.2 Weather Forecasting ..9
 3.3 Dust Mitigation General Measures ...10
 3.4 Dust Monitoring Locations ...12
 3.5 Alert System ..15

4. Trigger Point Setting and Response Measures ...16
 4.1 PM\textsubscript{10} Trigger Levels ...17
 4.1.1 Visible Dust Generation ...18
 4.2 Trigger Responses ..20

Tables

Table 1 - Trigger Levels / Concentrations ..17
Table 2 - Visual Dust Trigger Values ..18
Table 3 - Trigger Action Responses ..20
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLIANCE</td>
<td>Unified Management team formed by two entities, MSA & Flinders Power</td>
</tr>
<tr>
<td>APS</td>
<td>Augusta Power Stations</td>
</tr>
<tr>
<td>BAM</td>
<td>Beta Attenuation Monitor (continuous PM10 dust monitor)</td>
</tr>
<tr>
<td>FPA</td>
<td>Flinders Power Alliance</td>
</tr>
<tr>
<td>MSA</td>
<td>McMahon Services Australia</td>
</tr>
<tr>
<td>TARP</td>
<td>Trigger Action and Response Plan</td>
</tr>
</tbody>
</table>

Roles and Responsibilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Georgaris</td>
<td>CEO</td>
<td>Ensuring appropriate human and financial resources to carry out the functions of this Plan.</td>
</tr>
<tr>
<td></td>
<td>(Flinders Power)</td>
<td></td>
</tr>
<tr>
<td>Brad Williams</td>
<td>Program Manager</td>
<td>Development, implementation of, and compliance with this Plan.</td>
</tr>
<tr>
<td></td>
<td>(Flinders Power)</td>
<td></td>
</tr>
<tr>
<td>Kym Maule</td>
<td>Facility Manager</td>
<td>Overall responsibility for Augusta Power Stations site.</td>
</tr>
<tr>
<td></td>
<td>(Flinders Power)</td>
<td>Development, implementation of, and compliance with this Plan.</td>
</tr>
<tr>
<td>Ben Dearman</td>
<td>Project Director</td>
<td>Responsible for the leadership of the Ash Dam Rehabilitation Project.</td>
</tr>
<tr>
<td></td>
<td>(McMahon Services)</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Role</td>
<td>Responsibilities</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Ross Fitzgerald</td>
<td>Project Manager</td>
<td>Responsible for operational management of the Ash Dam Rehabilitation Project. Ensure that dust mitigation and response measures are implemented and complied with in accordance with this Plan.</td>
</tr>
<tr>
<td>Mick Oster</td>
<td>Site Manager</td>
<td>Responsible for the daily site works undertaken associated with the Ash Dam Rehabilitation Project. Ensure that the dust mitigation and response measures are implemented and complied with in accordance with this Plan. Notify Project Manager and Project Director when mitigation measures have been implemented. Notify Project Manager and Project Director of any exceedances.</td>
</tr>
<tr>
<td>Terry Manning</td>
<td>Environmental Coordinator</td>
<td>Responsible for technical advice and support. Ensure dust monitoring equipment is functional and accurate. Ensure proactive and reactive notification mechanisms are in place. Collection and analysis of high-volume TSP and PM10 dust monitors. Monitoring of compliance with this Plan. Reporting of data.</td>
</tr>
</tbody>
</table>
1. Introduction

This Fugitive Dust Trigger Action Response Plan (‘TARP’) outlines the procedures and processes required to ensure the appropriate dust identification and mitigation actions are implemented during the Augusta Power Stations (APS) Ash Dam Rehabilitation Project.

This TARP is developed in accordance with the requirements of the Flinders Power Environmental Closure and Post Closure Plan and the Augusta Power Stations Dust Management Plan.

The mitigation and monitoring requirements included in this TARP have been compiled to ensure compliance with the Environment Protection Authority Licence number 13006 condition S-9 which states:

S-9 Dust Prevention

The licensee must:

- Take all reasonable and practicable measures to prevent dust leaving the Premises;
- Develop a Dust Management Plan to the satisfaction of the EPA; and
- Implement the Dust Management Plan approved in writing by the EPA (or any revised plan approved in writing by the EPA).

Flinders Power Alliance is a partnership between McMahon Services and Flinders Power, responsible for the implementation and management of the Ash Dam Rehabilitation Project.

1.1 Guiding Principles

The guiding principles for the rehabilitation of the ash dam project are:

1. Efficient construction: the concept is safe and efficient to construct
2. Reliable design: the solution is safe for the community and the environment in the long term

3. Dust is suppressed: the concept reduces the potential of dust leaving the site

4. Water is managed: the concept allows for safe discharge of water

5. Realistic costs: the concept considers costs to Flinders through design, minimal maintenance and allows for re-use of the site

6. The landform is self-sustaining: zero or minimal ongoing maintenance

7. Public nuisance: risks associated with odour and insect breeding in ponded water are managed

This TARP is specifically prepared to address Guiding Principle 3.

1.2 Purpose

The focus of this TARP is the prevention and control of fugitive dust through early detection of air quality conditions deemed to be unacceptable with the criteria as set by the Environmental Protection (Air Quality) Policy 2016. The particular focus of this Plan is ensuring compliance within the surrounding communities of Port Augusta and Stirling North with the level applied in South Australia for PM10 (dust particles) as a concentration of 50 micrograms /m3 averaged over 24 hours (as set by the Environment Protection (Air Quality) Policy 2016), and a PM10 annual average of 25 micrograms/m3 (as set by the National Environment Protection (Ambient Air Quality) Measure 2015)

The purpose of the TARP is to:

- Outline the mechanisms used for early identification of dust causing conditions and activities that may cause a breach of this dust level within the community;
- Define response measures to high-dust events;
- Outline responsibilities within the project team structure for achieving compliance with this Plan; and
• Define a method to measure the effect of actions taken to reduce dust generation.

This TARP mandates escalating actions and responses to set trigger points. Where a trigger point is reached, the responding actions shall be carried out, properly and promptly.

2. Objective

The objective of the TARP is to provide the management measures required for the successful rehabilitation of the Ash Dam and borrow pit, whilst maintaining appropriate air quality standards.

3. Scope

The mitigation of fugitive dust emissions from the site is of paramount importance to minimise the effect of dust on the local community. Flinders Power Alliance has introduced a dust Trigger Action Response Plan (TARP) to prevent or control fugitive dust emissions to avoid exceeding criteria levels as standardised by the Environment Protection (Air Quality) Policy 2016, through early detection.

The key risk focus area for the Plan is the Ash Storage Area, and in particular the works associated with the rehabilitation program being undertaken by the Flinders Power Alliance.

3.1 Potential Dust-Generating Activities and Conditions

The following activities and conditions have been identified as having the potential to cause fugitive dust (ash or soil):

• Areas of unsealed Ash Storage Area.
• The clearance of the borrow pit;
• The loading of soil into dump trucks using excavators at the borrow pit;
• The haulage of soil by open-top dump truck along unsealed accessways to the Ash Storage Area;
• The dumping of soil along ‘access fingers’ on the Ash Storage Area;
• The emplacement of soil across the Ash Storage Area using a Pistenbully and/or D6 or D9 dozer;
• The final contouring of the borrow pit area;
• Harrowing of the soil on the Ash Storage Area and borrow pit ready for seeding;
• Exposed areas of soil on the borrow pit and ash storage area (along access fingers and areas of emplaced soil) prior to seed germination; and
• Ash Storage Area levee banks – inside and outside banks.
• Former Coal Stockpile Area

3.2 Weather Forecasting

The weather encountered at the site throughout the life of the project will have a significant impact on the dust generated and its subsequent impact upon sensitive receptors nearest the site.

Dust generation at the site is dependent on wind speed whereas wind direction will determine the risk to the identified sensitive receptors i.e. Port Augusta is located to the north-north west of the site hence a south to south east wind has the potential to drive any dust generated at the site towards the town. Whereas Stirling North located to the north-east may be affected by south-westerly winds.

Flinders Power Alliance have installed a weather station at site and currently have in place a 5-day weather forecasting system which is disseminated daily (every week day) to the FPA project team which includes the following:

• Wind speed and direction;
• General forecast information including temperature, chance of precipitation, predicted rainfall intensity etc;
• A risk coding system (wind speeds and direction in the at-risk vector for the neighbouring community);
• Bureau of Meteorology dust warning alert;
• Bureau of Meteorology severe weather alert.

A full description of these measures are articulated in the Flinders Power Dust Management Plan.

As the predictions are for a 5-day forecast, the Friday report is utilised across the weekend by the project team. The responsibility for the issuing the daily report is with the Environmental Coordinator.

The location of the weather station is indicated in Figure 1. The weather station is fitted with a Windsonic™ which provides wind speed (0 – 60 m/s) and wind direction (0 - 359°).

Predicted weather conditions are discussed at the daily toolbox talk.

Forecasts identifying potential high winds or severe weather events result in close monitoring of conditions by all members of the project team. Monitoring includes a review of weather station data, regular screening of the Bureau of Meteorology website, monitoring of real-time dust levels and visual observations of conditions at the site.

3.3 Dust Mitigation General Measures

Ash Storage Area Sealing

The surface of the Ash Dam was sealed with dust suppressant Vital Bon-Matt Stonewall by watercart, hand spraying from the banks and by aerial application in November 2016 and again in January 2017.

Additional areas of dust suppressant application, such as the inside or outside levee banks, are applied on an as-needs basis by water cart or hand spraying.

Dust Mitigation Measures on Haul Roads

The primary suppression of fugitive dust emissions emanating from haul roads is the wetting down of the haul road with a water cart. Additionally, given this work is commencing in
Summer 2017, frequency of wetting of the haul roads will be high. FPA have also committed to the application of a longer lasting dust suppressant reagent specifically developed for dust suppression on haul roads, Vital Chemical, Vital Bon-Matt HR.

Dust suppressant Vital Bon-Matt HR, is to be applied via watercart and will be applied to the haul roads on an ‘as-needs’ basis. In areas where heavy vehicles and machinery will be turning, the suppressant will be applied more frequently.

General Dust Management – Borrow Pit, Access Fingers and Emplaced Soil

The soil blend is a red-brown sandy clay with an inherent moisture content of approximately 10%. To date it has been demonstrated that the soil has good self-sealing properties to form a surface crust. The surface crust has demonstrated the ability to withstand wind speeds of >50km/hr.

For general dust management dust suppression may be undertaken by:

- Continuous watercart application, following the haul circuit from borrow pit to Ash Storage Area;

- Pre-wetting prior to haulage. Wind combined with the motion of the truck can cause dust to be blown from the surface of the heaped soil while it is in transit. The pre-wetting is designed to form a crust once the soil is loaded in the tray to minimise the risk of dust generation. This technique is not required when the soil already has sufficient inherent moisture;

- Wetting/spraying during potential dust generating activites, being the dust control activities in the borrow pit to minimise dust generation during the extraction and loading of soil into the haul trucks by excavator. Again, this technique is not required when the soil already has sufficient inherent moisture; and

- Wetting/spraying heaped soil once it has been depositied on the Ash Storage Area and prior to it being pushed into position by dozer. The most ideal scenario is the depositing of soil and immediate spreading by dozer to compact and re-seal the soil surface. However, on occasions when this cannot occur, the heaped soil will be sprayed by watercart within one hour of emplacement to ensure the surface is re-sealed.
Water will be applied using water carts via a water cannon, hose, batter sprays or dribble bar.

Should conditions require it, a dust suppressant (Vital Bon-Matt Stonewall) will be utilised within the Borrow Pit, along the Access Fingers and within areas of emplaced soil on the Ash Storage Area. This continued monitoring of conditions, combined with assessment of dust monitoring data, is the responsibility of the Site Manager.

Dust Management Former Coal Stockpile Area

Revegetation of the area is currently underway with the long term aim for a fully self sustaining vegetated area. This area has a scheduled watering regime of once weekly via an installed sprinkler system which is designed to promote plant growth as well as provide a crust on the growing medium to prevent dust lift.

When strong winds are forecasted for the area the sprinkler will be manually operated prior to the forecast wind event to prevent dust lift. Dependant on the forecast, and site conditions, the sprinkler system will be deployed i.e. prior to forecast time, during strong winds and post strong wind conditions.

The management of this arrangement is the responsibility of the Site Manager.

3.4 Dust Monitoring Locations

A total of five continuous real-time PM10 dust monitoring locations have been installed, three surrounding the Ash Storage Area and two at selected locations within the identified sensitive receptors (Port Augusta and Stirling North). The dust monitoring locations are illustrated in Figure 1.

These five stations support and complement the five ambient high-volume air samplers in existence within the Port Augusta and Stirling North community. The locations of these sampling stations are shown on Figure 2 below.
Figure 1 – Real-time Continuous PM10 Dust monitoring locations – Ash Storage Area & BAM Locations
Ash Dam

Three Ecotech E-Sampler Particulate Monitors (‘Protinus 1000’) have been installed as follows:

- The *South Operational Monitor*, located on the southern Ash Dam boundary
- The *East Operational Monitor*, located on the eastern Ash Dam boundary
- The *North Operational Monitor*, located on the northern boundary of the Polishing Pond at the closest point of site to Port Augusta residences.

The Ecotech E-Sampler Particulate Monitor records real-time data at 5 minute intervals; this is a continuous system measuring and reporting PM$_{10}$. This dust monitoring system provides 100% valid data return when continuous monitoring is not interrupted.

An Ecotech qualified technician will conduct monthly site visits, undertaking any general maintenance, calibration and validating recorded data.

These dust monitors will provide the data used for the trigger system.
For further detail and specifications, refer to document ‘Protinus 1000’ product specification sheet.

Community Monitors

Two Exactus Beta Attenuation Monitors (BAM) have been installed within the nearest identified sensitive human health receptors to the site, one each at Lea Memorial Oval (Port Augusta) and Stirling North. Data is collected on a 10-minute average basis. The data collected from these monitors will be utilised for community monitoring against the 24-hour ambient particulate concentrations (PM$_{10}$ concentration of 50ug/m3). Ecotech are engaged to perform a QAQC check, and NATA calibration requirements which are reported monthly.

For further detail and specifications, refer to the document ‘MetOne BAM 1022 Data Sheet’.

3.5 Alert System

The data received from the E-Sampler Particulate Monitors are monitored online in real-time by both Flinders Power and McMahon Services personnel. Data outputs are presented on screens within the operational offices onsite, directly adjacent to project team personnel. Text alerts have been developed in accordance with the threshold values listed in *Table 1* below. Personnel nominated to receive the text alerts are:

- Brad Williams
- Kym Maule
- Ben Dearman
- Ross Fitzgerald
- Mick Oster
- Terry Manning

The alert will trigger response actions as listed in *Table 3 – Trigger Action Responses*.
4. Trigger Point Setting and Response Measures

The FPA team have developed trigger points based on an iterative approach whereby dust measurements at site and within the community will be correlated against observations and management practices at site. The aim is to develop a management procedure to allow first response to be based on actual data supported by visual observations to allow for real-time reaction.

The target value for this project is to ensure dust emissions originating from the site do not cause an exceedance of the Environment Protection (Air Quality) Policy 2016 maximum concentration of 50 µg/m³ PM10 within the community over a 24hr monitoring period.

The trigger alert rationale for the community monitoring stations is based on “high level/short duration” & “low level/long duration”, namely:

a) short term / high dust events – an acute dust situation requiring an immediate remedial action; and

b) long term / low dust levels - which unchecked may exceed the 24hr average, and are sometimes more difficult to observe - so a low limit alarm over a longer timeframe is needed.

The Ash Storage Area monitors only alert if each of the 3 conditions are met:

- wind speed over 7m/s; and
- wind from the direction of the ASA; and
- PM10 dust levels over the set criteria (Table 2) for each alert level.

The Community BAMs only alert if each of the 3 conditions are met:

- wind speed over 7m/s; and
- wind from the direction from the ASA (southerlies for Lea Memorial Oval or westerlies for Stirling North); and
- PM10 dust levels over the set criteria (Table 2) for each alert level

4.1 PM\textsubscript{10} Trigger Levels

Table 1 - Trigger Levels / Concentrations

Community monitors – MetOne BAMs

<table>
<thead>
<tr>
<th>Time Frame*</th>
<th>Normal</th>
<th>Level 1 Alert</th>
<th>Level 2 Alert</th>
<th>Level 3 Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Conditions</td>
<td>PM\textsubscript{10} < 20 µg/m3</td>
<td>average > 90 µg/m3</td>
<td>average > 75 µg/m3</td>
<td>average > 60 µg/m3</td>
</tr>
<tr>
<td>Meteorological Conditions</td>
<td>Average wind speed 6 m/s</td>
<td>Average wind speed > 7 m/s</td>
<td>Average wind speed > 7 m/s</td>
<td>Average wind speed > 7 m/s</td>
</tr>
<tr>
<td>Wind Direction</td>
<td>Ebam 2 LMO</td>
<td>125 - 203</td>
<td>125 - 203</td>
<td>125 - 203</td>
</tr>
<tr>
<td>Ebam 2 STN</td>
<td>225 - 270</td>
<td>225 - 270</td>
<td>225 - 270</td>
<td></td>
</tr>
</tbody>
</table>

* Calculated as rolling averages, utilizing the progressive 10 minute data intervals

Ash Storage Area monitors – ECOTECH E-Sampler Particulate Monitors

<table>
<thead>
<tr>
<th>Time Frame*</th>
<th>Normal</th>
<th>Level 1 Alert</th>
<th>Level 2 Alert</th>
<th>Level 3 Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Conditions</td>
<td>PM\textsubscript{10} < 20 µg/m3</td>
<td>average > 60 µg/m3</td>
<td>average > 80 µg/m3</td>
<td>average > 100 µg/m3</td>
</tr>
<tr>
<td>Meteorological Conditions</td>
<td>Average wind speed 6 m/s</td>
<td>Average wind speed > 7 m/s</td>
<td>Average wind speed > 7 m/s</td>
<td>Average wind speed > 7 m/s</td>
</tr>
<tr>
<td>Wind Direction</td>
<td>North U16996</td>
<td>125 - 203</td>
<td>125 - 203</td>
<td>1 - 360</td>
</tr>
<tr>
<td>East U16998</td>
<td>225 - 270</td>
<td>225 - 270</td>
<td>1 - 360</td>
<td></td>
</tr>
<tr>
<td>South U16999</td>
<td>337.5 - 0 & 0 - 90</td>
<td>337.5 - 0 & 0 - 90</td>
<td>1 - 360</td>
<td></td>
</tr>
</tbody>
</table>

* Calculated as rolling averages, utilizing the progressive 5 minute data intervals
4.1.1 Visible Dust Generation

Dust generation will also be monitored visually. Plant and equipment will be utilised as visual guides. At times, visible levels of fugitive dust that are deemed unacceptable may not exceed the trigger values identified at the dust monitoring stations. Conversely, a PM10 trigger may be alarmed at the monitoring stations without any discernible level of dust.

For the purpose of this Fugitive Dust TARP, trigger values for visual dust assessment shall be applied as follows:

Table 2 Visual Dust Trigger Values

<table>
<thead>
<tr>
<th>Ambient Conditions – visual assessment</th>
<th>Normal</th>
<th>Level 1 Alert</th>
<th>Level 2 Alert</th>
<th>Level 3 Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsealed Roads</td>
<td>Minor localized dust during works activity</td>
<td>Visible dust above height of dump truck tray for any period of time up to 30 minutes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthmoving Works</td>
<td>Visible dust above excavator cab for any period of time up to 30 minutes.</td>
<td>Visible dust above dozer cab for any period of time up to 30 minutes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-situ Soil, Ash Dam</td>
<td>Visible dust above ash dam wall for any period of time up to 30 minutes.</td>
<td>Visible dust above dozer/PistenBully cab for any period of time up to 30 minutes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triggers per Level 1.</td>
<td>Localised areas of dust generation however not contained within site boundary</td>
<td>Extensive areas of dust generation, not contained within site boundary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ash Dam & Levee Banks

Localised visible dust above ash dam wall for any period of time up to 30 minutes.

Localised visible dust emanating from levee banks.

Dust from all activities contained within site boundary

Responsible persons shall be trained in understanding the visible dust trigger and the response measures. Response measures for Level 1, 2 and 3 are outlined in *Table 3* below.
4.2 Trigger Responses

Table 3 - Trigger Action – List of Potential Responses

<table>
<thead>
<tr>
<th>Trigger Response</th>
<th>Normal</th>
<th>Level 1 Alert</th>
<th>Level 2 Alert</th>
<th>Level 3 Alert</th>
</tr>
</thead>
</table>
| Dust Monitor Alarm (PM10) and/or visual assessment | • Continue work in accordance with site management procedures
• Ensure all (two) water carts are in service. (further two are immediately available on site if required)
• Visually monitor dust generation | **Response Leader:** Site Manager
• Conduct a site inspection
• Site Manager to actively monitor dust generation and apply appropriate treatment option.
• Reduce site speed limits on unsealed roads to 15km/hr
• Apply water and/or dust suppressant to haul roads, exposed areas of the borrow pit or ASA or levee banks via watercart and/or hand spraying
• Ensure overloading of dump trucks with soil from borrow pit does not occur
• Apply water to tray of haul trucks after soil has been loaded by excavator to form an effective seal while the truck is in transit to the Ash Storage Area.
• Soakage with water of active work areas (borrow pit and ASA)
• Site Manager to actively monitor dust generation and apply appropriate treatment option.
• Utilise FP water cart
• Proactive watering of the former coal stockpile area when forecast is for strong winds. | **Response Leader:** Site Manager
• Ensure Project Manager and Facility Manager notified
• Conduct a site inspection
• Site Manager to actively monitor dust generation and apply appropriate treatment option.
• Review operations and consider suspension of work
• Reapply water and/or dust suppressant to haul roads, exposed areas of the borrow pit or ASA or levee banks via watercart and/or hand spraying
• Schedule in works to low dust generating activities
• Excavation areas to be reduced to low risk areas
• Sprinkler/batter spray water application from water carts will all be operating
• Spray soil before and after loading into dump trucks
• Engage additional water cart/s (eg Demolition works project or Footners)
• Undertake alternate route and/or concentrate on works and/or work areas with lower potential to generate dust
• Continue or initiate sprinkler operation on former coal stockpile area. | **Response Leader:** Site Manager
• Ensure Project Manager, Facility Manager, Project Director and Program Manager notified.
• Conduct a site inspection
• Site Manager to actively monitor dust generation and apply appropriate treatment option.
• Initiate project team meeting with above personnel.
• Cease operations, if required. All roles noted above are authorized to cease operations as/when required.
• Consider aerial application of dust suppressant by Aerotech
• Continue or initiate sprinkler operation on former coal stockpile area. Consider post event watering. |